Developmentally Regulated Subnuclear Genome Reorganization Restricts Neural Progenitor Competence in Drosophila

نویسندگان

  • Minoree Kohwi
  • Joshua R. Lupton
  • Sen-Lin Lai
  • Michael R. Miller
  • Chris Q. Doe
چکیده

Stem and/or progenitor cells often generate distinct cell types in a stereotyped birth order and over time lose competence to specify earlier-born fates by unknown mechanisms. In Drosophila, the Hunchback transcription factor acts in neural progenitors (neuroblasts) to specify early-born neurons, in part by indirectly inducing the neuronal transcription of its target genes, including the hunchback gene. We used in vivo immuno-DNA FISH and found that the hunchback gene moves to the neuroblast nuclear periphery, a repressive subnuclear compartment, precisely when competence to specify early-born fate is lost and several hours and cell divisions after termination of its transcription. hunchback movement to the lamina correlated with downregulation of the neuroblast nuclear protein, Distal antenna (Dan). Either prolonging Dan expression or disrupting lamina interfered with hunchback repositioning and extended neuroblast competence. We propose that neuroblasts undergo a developmentally regulated subnuclear genome reorganization to permanently silence Hunchback target genes that results in loss of progenitor competence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progenitor Competence: Genes Switching Places

Drosophila neural progenitor cells are competent to give rise to certain neuronal cell types only during a limited period of time. Kohwi et al. link the termination of early competence to changes in subnuclear organization of chromatin.

متن کامل

Maintaining youth in Drosophila neural progenitors.

An important question is how dividing stem cells maintain competence to generate multiple cell types, whereas most other cells become progressively restricted during development. The molecular basis for progenitor competence--or how competence is progressively restricted--has remained mysterious. Recent work has shown that Drosophila neuroblasts and mammalian neural progenitors are more similar...

متن کامل

Opportunities lost and gained: Changes in progenitor competence during nervous system development.

During development of the central nervous system, a small pool of stem cells and progenitors generate the vast neural diversity required for neural circuit formation and behavior. Neural stem and progenitor cells often generate different progeny in response to the same signaling cue (e.g. Notch or Hedgehog), including no response at all. How does stem cell competence to respond to signaling cue...

متن کامل

Aging Neural Progenitors Lose Competence to Respond to Mitogenic Notch Signaling

Drosophila neural stem cells (neuroblasts) are a powerful model system for investigating stem cell self-renewal, specification of temporal identity, and progressive restriction in competence. Notch signaling is a conserved cue that is an important determinant of cell fate in many contexts across animal development; for example, mammalian T cell differentiation in the thymus and neuroblast speci...

متن کامل

Developmentally regulated higher-order chromatin interactions orchestrate B cell fate commitment

Genome organization in 3D nuclear-space is important for regulation of gene expression. However, the alterations of chromatin architecture that impinge on the B cell-fate choice of multi-potent progenitors are still unclear. By integrating in situ Hi-C analyses with epigenetic landscapes and genome-wide expression profiles, we tracked the changes in genome architecture as the cells transit from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2013